• On the mechanism of rapid metal exchange between thiolate-protected gold and gold/silver clusters: a time-resolved in situ XAFS study
    B. Zhang, O.V. Safonova, S. Pollitt, G. Salassa, A. Sels, R. Kazan, Y. Wang, G. Rupprechter, N. Barrabés and T. Bürgi
    Physical Chemistry Chemical Physics, 20 (7) (2018), p5312-5318
    DOI:10.1039/C7CP08272J | Abstract | Article HTML | Article PDF | Supporting Info
 
The fast metal exchange reaction between Au38 and AgxAu38−x nanoclusters in solution at −20 °C has been studied by in situ X-ray absorption spectroscopy (time resolved quick XAFS) in transmission mode. A cell was designed for this purpose consisting of a cooling system, remote injection and mixing devices. The capability of the set-up is demonstrated for second and minute time scale measurements of the metal exchange reaction upon mixing Au38/toluene and AgxAu38−x/toluene solutions at both Ag K-edge and Au L3-edge. It has been proposed that the exchange of gold and silver atoms between the clusters occurs via the SR(-M-SR)n (n = 1, 2; M = Au, Ag) staple units in the surface of the reacting clusters during their collision. However, at no point during the reaction (before, during, after) evidence is found for cationic silver atoms within the staples. This means that either the exchange occurs directly between the cores of the involved clusters or the residence time of the silver atoms in the staples is very short in a mechanism involving the metal exchange within the staples.
  
A CuAu38 bimetallic nanocluster was synthesized by adding a single copper atom to the Au38(2-PET)24 nanocluster. The absence of CuxAu38(2-PET)24 doped species was demonstrated by MALDI-TOF mass spectrometry. A separation of bimetallic clusters was attained for the first time where isomers of the E2 enantiomer of the Au38Cu1(2-PET)24 adduct were successfully isolated from their parent cluster using chiral HPLC. The CD of the isolated isomers revealed a change in their electronic structure upon copper addition. The luminescence of the Au38Cu1 adduct is significantly enhanced in comparison with the parent Au38 nanocluster. The stability of the newly formed adduct is strongly dependent on the coexistence of the Au38 nanoclusters.
Multiple Ag atoms were doped inside Au38(SCH2CH2Ph)24 nanoclusters using the metal exchange method for the first time for the synthesis of AgxAu38–x(SCH2CH2Ph)24. MALDI-TOF mass spectrometry revealed the time dependence of the synthesis. Cluster species with different numbers of Ag atoms (different x values) migrate differently on a chromatography (HPLC) column, which allows one to isolate cluster samples with a narrowed distribution of exchanged metal atoms. The enantiomers of selected AgxAu38–x(SCH2CH2Ph)24 samples (average x = 6.5 and 7.9) have been separated by HPLC. Doping changes the electronic structure, as is evidenced by the significantly different CD spectra. UV–vis spectra of the doped sample also show diminished features. The temperature required for complete racemization follows Au38 > AgxAu38–x (x = 6.5) > AgxAu38–x (x = 7.9). To our surprise, the racemization of AgxAu38–x(SCH2CH2Ph)24 (x = 7.9) occurred even at 20 °C. Racemization involves a rearrangement of the staple motifs at the cluster surface. The results therefore show an increased flexibility of the cluster with increasing silver content. The weaker Ag–S bonds compared to Au–S are proposed to be at the origin of this observation. The experimentally determined activation energy for the racemization is ca. 21.5 kcal/mol (x = 6.5) and 19.5 kcal/mol (x = 7.9), compared to 29.5 kcal/mol for Au38(SCH2CH2Ph)24, suggesting no complete metal–S bond breaking in the process.
 
A fast redistribution of metal atoms occurs upon mixing the AgxAu38−x and Au38 nanoclusters in solution, as observed by mass spectrometry. Physical separation of AgxAu38−x and Au38 species by a dialysis membrane prohibits the metal migration, which suggests that collisions between the reacting clusters are at the origin of the observation.
  • Pd2Au36(SR)24 cluster: structure studies
    B. Zhang, S. Kaziz, H. Li, D. Wodka, S. Malola, O.V. Safonova, M. Nachtegaal, C. Mazet, I. Dolamic, J. Llorca, E. Kalenius, L.M. Lawson Daku, H. Häkkinen, T. Buergi and N. Barrabes
    Nanoscale, 7 (40) (2015), p17012-17019
    DOI:10.1039/C5NR04324G | unige:75923 | Abstract | Article HTML | Article PDF | Supporting Info
The location of the Pd atoms in Pd2Au36(SC2H4Ph)24, is studied both experimentally and theoretically. X-ray photoelectron spectroscopy (XPS) indicates oxidized Pd atoms. Palladium K-edge extended X-ray absorption fine-structure (EXAFS) data clearly show Pd-S bonds, which is supported by far infrared spectroscopy. By comparing theoretical EXAFS spectra in R space and circular dichroism spectra of the staple, surface and core doped structures with experimental spectra.
  • Modulation of Active Sites in Supported Au38(SC2H4Ph)24 Cluster Catalysts: Effect of Atmosphere and Support Material
    B. Zhang, S. Kaziz, H. Li, M. Gonzalez Hevia, D. Wodka, C. Mazet, T. Bürgi and N. Barrabés Rabanal
    The Journal of Physical Chemistry C, 119 (20) (2015), p11193-11199
    DOI:10.1021/jp512022v | unige:72892 | Abstract | Article HTML | Article PDF
We investigate the distinctly different interaction of thiolate-protected cluster Au38(SC2H4Ph)24with two diverse support materials Al2O3 and CeO2. The catalytic surfaces have been heated in different atmospheres, and the removal of the thiolate ligands has been studied. Thermogravimetry (TG), temperature-programmed process coupled with mass spectrometer (TPRDO-MS), and X-ray absorption spectroscopy (XAFS) studies were performed to understand the desorption of thiol ligands depending on conditions and support material. Depending on the atmosphere and the support material the fate of the thiol ligands is different upon heating, leading to metallic Au in the case of Al2O3 and to cationic Au with CeO2. The thiolate removal seems to be a two-step procedure. The catalytic activity of these Au38-supported clusters was studied for the aerobic oxidation of cyclohexane. Conversion was higher for the gold clusters supported on CeO2. Surprisingly, a significant amount of cyclohexanethiol was found, revealing the active participation of the thiolate ligand in catalytic reactions. The observation also indicates that breaking and formation of C–S bonds can be catalyzed by the gold clusters.
  
Pd2Au36(SC2H4Ph)24 clusters have been prepared, isolated and separated in their enantiomers. Compared to the parent Au38(SC2H4Ph)24 cluster the doping leads to a significant change of the circular dichrosim spectrum, however, the anisotropy factors are of similar magnitude in both cases. Isolation of the enantiomers allowed us to study the racemi-zation of the chiral cluster, which reflects the flexibility of the ligand shell composed of staple motifs. The doping leads to a substantial lowering of the racemization temperature. The change in activation parameters due to the doping may be solely due to modification of the electronic structure.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 13 2018